Beneficios modelados en carbono e hidrología de los bionegocios y ecosistemas

Raúl Galeas, Msc. – Especialista en SIG y modelación de carbono

Daniel Tenelanda, MSc. – Especialista en modelación hidrológica

¿Cómo citar este documento?

 

Ochoa-Tocachi, BF; Galeas, R; Tenelanda, D; (2022). Beneficios modelados en carbono e hidrología de los bionegocios y ecosistemas. ATUK Consultoría Estratégica, PROFONANPE, Iquitos, Perú.

 

Enlace al resumen ejecutivo:

https://profonanpe.org.pe/wp-content/uploads/2023/05/Beneficios-modelados-en-carbono.pdf

 

Introducción

El proyecto Humedales del Datem tiene como objetivo mejorar la resiliencia de las comunidades indígenas que viven en los ecosistemas de humedales ricos en reservas de carbono en la Provincia Datem del Marañón, región Loreto, Perú, y reducir las emisiones de gases de efecto invernadero (GEI), producidos por la deforestación.

 

Para cumplir con este objetivo, el proyecto implementa diversas actividades orientadas al fortalecimiento de capacidades de las instituciones gubernamentales y de base comunitaria, el desarrollo de bionegocios sostenibles en áreas de manejo de recursos naturales y el desarrollo de ciencia, tecnología y gestión del conocimiento. Los bionegocios promueven el manejo sostenible de los recursos naturales para beneficio de los pueblos indígenas de la zona, con el fin de mejorar sus capacidades organizativas, técnicas, financieras y de comunicación para guiar la transformación y comercialización de su producción.

 

El Fondo Ambiental del Perú (PROFONANPE), en colaboración con ATUK Consultoría Estratégica, realizó un estudio para la generación y modelación de escenarios hidro-climáticos, con el objetivo de evaluar el potencial de captura y almacenamiento de carbono y reducción de emisión de gases de efecto invernadero de los bionegocios y ecosistemas en la provincia del Datem del Marañón, así como medir su efecto hidrológico para reducir inundaciones y carga de sedimentos. Esta información permite evidenciar el valor de los bionegocios y los ecosistemas de la selva peruana con una mirada de mitigación y adaptación frente al cambio climático.

 

Para la evaluación del potencial de mitigación del cambio climático, se ha definido un cuadrante que se genera a partir de la delimitación de la cuenca donde se realiza el análisis hidrológico (Figura 1). Este cuadrante constituye el área de estudio, y es donde se ha generado el mapa de cobertura (ecosistemas) y uso del suelo. Este mapa constituye el punto de partida para identificar las áreas intervenidas y las áreas naturales, las mismas que posteriormente son modificadas para disponer de un escenario de línea base y uno proyectado donde se evaluaron los beneficios en términos de carbono de la implementación de los bionegocios.

 

Figura 1. Mapa de bosques y usos del área de estudio. Las subcuencas marcadas con los números 3, 4 y 8 son objeto de la modelación hidrológica. Los puntos negros corresponden a centros poblados. El color verde representa área de bosque, el color azul son cuerpos de agua y el color amarillo son zonas sin bosque. El color rojo representa pérdidas de bosque entre los años 2001 y 2020. Fuente: PROFONANPE, 2022. Elaboración: ATUK Consultoría Estratégica, 2022.

Modelación de carbono

La modelación de carbono parte de la definición de 3 escenarios, los mismos que son comparados con el potencial de los bionegocios en términos de beneficios de carbono.

  • El escenario 1, presenta los bionegocios dentro de las áreas de influencia. Fuera de estas áreas se considera la propagación de monocultivos con la finalidad de revisar el contraste que pueden tener las actividades de los bionegocios frente a las actividades productivas convencionales en el área piloto.
  • El escenario 2, considera que los bionegocios se expanden en toda el área de los corredores y fuera de estos corredores, las áreas intervenidas se presentan como monocultivos.
  • El escenario 3, constituye el más nocivo, y dentro del mismo se considera que no existen bionegocios y prácticamente todas las áreas intervenidas son transformadas a monocultivos. En este escenario se evalúa en términos de cuáles son las consecuencias de no tener bionegocios en el área piloto.

Mediante el establecimiento de estos escenarios se hace posible determinar los cambios en las reservas de carbono y emisiones de GEI, contrastando el área donde se establecen los bionegocios con posibles usos previos del suelo especialmente relacionados con monocultivos.

Un componente central del proceso de estimación del potencial de mitigación es la selección de los reservorios de carbono y las fuentes de emisiones de GEI. Para esto se ha utilizado bibliografía existente relacionada con los sistemas de chakra amazónicas como referencia para los bionegocios, y los usos del suelo previos al establecimiento de bionegocios en los escenarios del presente estudio, así como los datos por defecto que se presentan en las guías del IPCC. En el caso de los reservorios se ha considerado la biomasa aérea, biomasa subterránea, necromasa y el carbono en suelos; y por otro lado para las fuentes se ha considerado las emisiones por quemas y ganado.

El cálculo del potencial de mitigación se lo proyecto con un alcance temporal de la implementación de bionegocios por 30 años (este valor puede variar dependiendo de las proyecciones que se quieran realizar).  La estimación del potencial de mitigación se ha planteado mediante la comparación de los bionegocios, frente a la implementación de actividades previas como el establecimiento de monocultivos en diferentes condiciones y escenarios.

Los resultados para el área piloto de la Provincia del Datem del Marañón muestran que el potencial neto de mitigación al cambiar un monocultivo de cacao al sistema de bionegocios es el más alto registrado un valor de 4’208.263,08 tCO2. En el escenario donde el 80% es un monocutlivo y el otro 20% se encuentran los bionegocios (escenario actual), el cambio por la actividad RPF muestra un potencial de mitigación neto es de 2’603.739,94 tCO2/ha. Finalmente, el escenario donde el 42% de corresponde a monocultivos y el 58% a bionegocios (escenarios de expansión en todos los corredores), el potencial de mitigación neto de cambiar todo con la actividad es de 1’366.963,47 tCO2/ha.

Finalmente, se ha generado una herramienta de cálculo de Excel que presenta los resultados expuestos en el presente documento. Esta herramienta podrá ser utilizada por el proyecto para actualizar los resultados en caso de que se disponga de información a mayor detalle o de que se quieran cambiar los parámetros para los cálculos.

 

Figura 2. Resumen de cálculos del potencial de mitigación del área piloto de la Provincia del Datem del Marañón. Fuente y elaboración: ATUK Consultoría Estratégica, 2022.

Modelación hidrológica

Los impactos hidrológicos fueron evaluados a través de modelaciones hidrológicas, usando los mismos escenarios derivados anteriormente. Así, los escenarios fueron utilizados para una evaluación de las posibles tendencias de cambio con respecto a la producción de caudal líquido y cantidad de sedimentos. De esta manera discutir los beneficios hidrológicos de la línea base o actual con respecto a escenarios positivos que involucran conservación, restauración y manejo sostenible (como el caso de expansión de bionegocios) y escenarios negativos que implican deforestación o implementación de monocultivos.

Se determinaron tres subcuencas que drenan naturalmente en el interior del área piloto (Figura 1) para evaluar de mejor manera los escenarios configurados y las áreas de intervención ya sea en expansión o reducción de los bionegocios. Los máximos porcentajes de cambio en cada escenario corresponden al 1.76% de cambio con respecto al escenario de línea base en la subcuenca #8. Estos porcentajes de cambio son menores al 1% en las subcuencas #3 y #4, reflejando así las buenas prácticas de conservación que se han venido ejecutando en la zona.

Los modelos hidrológicos han demostrado ser una herramienta con gran potencial para evaluar la disponibilidad del agua y sus impactos. Particularmente, SWAT ha sido ampliamente utilizado en varios estudios a nivel mundial y a diferentes escalas espacio-temporales e incluso en zonas tropicales amazónicas. En este sentido, el modelo hidrológico Soil Water Assessment Tool (SWAT) puede representar la variabilidad espacial de las variables de entrada y salida, siendo una de sus mayores fortalezas. Por esto, SWAT a pesar de necesitar gran cantidad de información biofísica (Modelo digital de elevaciones, cobertura vegetal, tipo de suelo) y climática (Precipitación, Temperaturas máxima-mínima) ha demostrado ser una de las mejores herramientas para evaluar los cambios de usos de la tierra en modelación hidrológica. 

Los resultados obtenidos con respecto a la generación de caudales no mostraron diferencias sustanciales entre la inter-comparación de escenarios que permitan reflejar los beneficios hidrológicos a través de esta variable. Lo cual se puede atribuir de manera general a los pequeños porcentajes de cambio con respecto a los escenarios, que en el mejor de los casos reflejaron un valor del 1.76% en la subcuenca de interés #8. No obstante, los beneficios hidrológicos de la expansión de bionegocios a través de los corredores se vieron mejor reflejados en la evaluación de la variable de caudal solido (toneladas) y la producción de sedimentos (toneladas/hectárea). Reflejando una disminución con respecto a la línea base y mayor aun con respecto al escenario de expansión de monocultivos.

Se esperaría que a una escala espacial más fina de evaluación (p.ej., microcuencas menores a 20 km2), las evaluaciones serán mejor contrastadas con respecto a los escenarios. Por otro lado, esta evaluación necesitaría de una mayor demanda de datos, así como una mejor resolución del DEM (p.ej., determinada por aerofotografía) para poder determinar un área de drenaje en esta escala. Infiriendo la topografía plana del modelo digital de elevaciones de 12.5 m de resolución, que a su vez ya demanda de un alto costo computacional para su procesamiento.

 

Figura 3. Caudales y producción de agua promedio mensual multianual simulada en las subcuencas de interés. Los colores representan la producción total de agua, mientras más oscuro el color, mayor caudal. Fuente y elaboración: ATUK Consultoría Estratégica, 2022.

Figura 4. Caudales sólidos y producción de sedimentos promedio mensual multianual simulada en las subcuencas de interés. Los colores representan la producción total de agua, mientras más oscuro el color, mayor caudal. Fuente y elaboración: ATUK Consultoría Estratégica, 2022.

En la Figura 4, no se observan cambios significativos en la producción de sedimentos entre los escenarios, debido a las áreas pequeñas que son intervenidas (1–3%). El escenario de bionegocios es capaz de reducir la erosión del suelo y por tanto el transporte de sedimentos en los ríos para evitar la afectación de la calidad física del agua. El escenario de deforestación total muestra que los bosques y los bionegocios ayudan a reducir la erosión del suelo y el transporte de sedimentos. Si estos son deforestados, se espera que la carga de sedimentos se multiplique por un factor de entre 3 y 6 veces el valor actual, afectando considerablemente la calidad física del agua.

 

Como principal conclusión podemos decir que las acciones de conservación y producción amigable con el ambiente que al momento se han evaluada a través de las modelaciones, tanto de carbono e hidrológicas, usando como proxy los escenarios construidos con información de pérdida de bosque hasta el año 2021, contrastan en los resultados un buen manejo de las subcuencas en la zona de estudio.

 

Enlace al resumen ejecutivo:

https://profonanpe.org.pe/wp-content/uploads/2023/05/Beneficios-modelados-en-carbono.pdf

 

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Necesidades de monitoreo y evaluación de medidas de adaptación hacia el cambio climático

Los ecosistemas andinos tropicales juegan un papel fundamental en el mantenimiento y abastecimiento de agua, de la cual dependen más de 50 millones de personas en los Andes Tropicales. Estos ecosistemas también son fundamentales en el mantenimiento del clima a nivel regional y continental al captar gran cantidad de agua de las masas de nube que se precipitan por efectos de la orografía andina. Además, albergan una gran diversidad biológica caracterizada por su alto grado de singularidad y rareza.

 

Debido a estas características estos ecosistemas presentan un alto grado de vulnerabilidad frente al cambio climático (CC) y los cambios de cobertura y uso del suelo. Estos cambios influyen en la pérdida de biodiversidad, que a su vez afectan profundamente la seguridad hídrica y el bienestar humano. Para aumentar la resiliencia y disminuir la vulnerabilidad de las poblaciones a los impactos del CC (incluyendo desastres socio-naturales), se implementan medidas de mitigación y adaptación (Vuille, 2013) (p. ej. restauración, reforestación y construcción de infraestructura gris). Así, las medidas de adaptación que se implementen, según Bergkamp et al. (2003), tienen por objetivos:

 

  1. Reducir la vulnerabilidad de las personas y las sociedades a los cambios en las tendencias hidrometeorológicas, el aumento de la variabilidad y los fenómenos extremos.
  2. Proteger y restaurar ecosistemas que proporcionan recursos y servicios hídricos y terrestres críticos.
  3. Cerrar la brecha entre la oferta y la demanda de agua.

 

Por otra parte, Donatti et al. (2021) sugiere priorizar estas medidas de adaptación considerando el siguiente orden:   

  1. La magnitud de la intervención.
  2. El número de beneficiarios.
  3. El número de compromisos.
  4. Los costos de la solución.
  5. La aceptación y voluntad política.
  6. El apoyo de las partes interesadas.
  7. Capacitaciones técnica y financiera para la implementación.

 

En los últimos años ha aumentado el interés por planificar e implementar medidas de adaptación y reducir la vulnerabilidad de las poblaciones al CC. La mayoría de estas medidas, que nacen desde las necesidades identificadas por entidades gubernamentales de los países en vías de desarrollo (p. ej. Madagascar, Kenia, Ecuador, Colombia, Bolivia, Costa Rica) (Christiansen et al., 2018), se han implementado con el apoyo económico de financiadores internacionales (p. ej. CEPAL, CAF, GIZ, UE, FIIAPP), técnico de entidades implementadoras (p. ej. IUCN, IISD, EUROCLIMA+, ONU) y técnico-financiero de las instituciones gubernamentales. Las medidas incluyen a todas las partes interesadas, como son la sociedad civil, las instituciones gubernamentales y ONG, las cuales se basan en las capacidades de las personas, fomenta el aprendizaje conjunto e invierte en la gestión de conflictos (Bergkamp et al., 2003).

 

Se destacan las medidas de adaptación basadas en la naturaleza o en ecosistemas. Estas medidas hacen referencia al uso de la biodiversidad y a la infraestructura natural para ayudar a las poblaciones a adaptarse a los efectos adversos del cambio climático. Incluye, por ejemplo, la gestión sostenible y la conservación y restauración de ecosistemas que tienen beneficios colaterales sociales, económicos y culturales para las comunidades locales (GIZ et al., 2020). Aunque muy brevemente, se menciona a las medidas de adaptación basadas en infraestructura gris (Hammill & Dekens, 2014). Lo importante es que las medidas implementadas sean sostenibles, con base en la disponibilidad de recursos económicos, sociales e institucionales (INECC, 2019) porque los beneficios para las poblaciones deben continuar después del periodo de implementación.

 

Lo que queda entonces es evaluar los resultados de las medias implementas. Esto porque la Convención Marco de Naciones Unidas sobre el Cambio Climático (CMNUCC) ha pedido a los países informar –como una acción de rendición de cuentas– sobre los resultados de las medidas de adaptación (Christiansen et al., 2018). Sin embargo, aún no están claramente identificados los sistemas de monitoreo y evaluación de las medidas de adaptación (M&E)  y peor aún los indicadores para la evaluación de las mismas (Leiter, 2017). Esto es porque no existe un consenso respecto a cuál/es de las múltiples guías disponibles para el M&E es la indicada para un proyecto y área de estudio específicos. No obstante, como punto de partida se puede seguir el siguiente esquema para el M&E en cualquier etapa de la implementación de una medida de adaptación. 

 

  1. Determinar el propósito del M&E: El propósito general del M&E puede ser para la generación de políticas, gestión, aprendizaje, rendición de cuentas. Se debe determinar si se desea evaluar los procesos (p. ej. monitoreo de la implementación de un Plan Nacional de Adaptación) o los resultados de una medida (p. ej. evaluar si la vulnerabilidad se ha reducido como resultado de un proyecto) (Leiter, 2017). El propósito del M&E se puede definir antes, durante y después de implementada una medida.

 

  1. Conectar el propósito con un enfoque de M&E viable: Es necesario recalcar que existen una variedad de enfoques para el M&E con un rango de complejidad variado (incluyendo técnicos y financieros) para un mismo propósito. Básicamente significa tener una idea clara de las necesidades de información y preguntas clave que deben ser contestadas por el M&E (Hammill & Dekens, 2014). Este punto es crucial para la selección de indicadores.

 

  1. Selección de indicadores: La selección de los indicadores depende de la escala de análisis; y pueden ser indicadores cuantitativos y cualitativos de las áreas socio-económicas y físicas (i.e., procesos ambientales) para el M&E de un proyecto finalizado, en desarrollo o un escenario futuro. Otro punto importante a tratar es que, para la generación de los indicadores, debe haber una comunicación continua entre las partes interesadas (p. ej. pobladores, líderes comunitarios, tomadores de decisiones locales, agencias gubernamentales y no gubernamentales) incluyendo una serie de talleres/encuentros e informes (Donatti et al., 2021). Así se podrá evaluar las amenazas climáticas y la vulnerabilidad de las poblaciones eficazmente.

 

  1. Generación de escenarios tendenciales: Los escenarios se pueden entender como “supuestos” externos o internos que afectan la trayectoria del medio analizado (p. ej. población, país, cuenca hidrográfica). Cuando el objetivo del M&E es evaluar la eficiencia de una medida a un escenario futuro (p. ej. cambio en los patrones de lluvia) se sugiere utilizar escenarios científicamente confiables como lo son los escenarios de cambio climático y econométricos del IPCC o los escenarios de tendencias climáticas y socio-económicas gubernamentales. También pueden evaluarse los cambios en la gestión de las cuencas hidrográficas (p. ej. cambios de uso y ocupación de suelo y de la infraestructura natural o instalación de proyectos hidroeléctricos) mediante modelos físicos y socio-económicos. Luego de identificado el escenario se estima cada indicador hacia el futuro (p. ej. mediante correlaciones).

 

  1. Evaluación: Es una revisión estadística/objetiva en un punto específico en el tiempo (INECC, 2019). Con los indicadores para el M&E de un proyecto finalizado, en desarrollo o un escenario futuro los resultados obtenidos permiten un análisis de la información con miras a replicar la medida, realizar modificaciones para lograr los resultados deseados o seleccionar medidas para lograr/evitar un escenario futuro. En esta etapa es recomendable preparar una teoría del cambio para el seguimiento y la evaluación de las soluciones (desde la situación actual a la situación ideal, incluyendo las actividades y resultados) (Donatti et al., 2021; INECC, 2020). Por tanto, la evaluación permite rediseñar o realizar recomendaciones prácticas y aplicables cuando los resultados no son los esperados según los resultados estadísticos y/o la teoría del cambio.

 

Luego del M&E, el diseño, rediseño o finalización del proyecto debe basarse en factores como la magnitud de la intervención, sus beneficios, ventajas y desventajas, costos, aceptación y de implementación. Esto es porque el M&E constituye el núcleo de la gestión adaptativa. Sin ser plenamente consciente de los avances realizados, será muy difícil aprender de los éxitos y fracasos de las medidas implementadas y adaptarse a las condiciones cambiantes. Pero, además, es importante contar con el apoyo de los tomadores de decisiones, líderes políticos y entidades privadas para priorizar la implementación de las medidas y el M&E para ayudar las poblaciones (sobre todo al sector indígena, rural y femenino) y al sector íntimamente ligado al agua (p. ej. agricultores, empresas de generación de electricidad y potabilización del agua) para una adecuada adaptación hacia el cambio climático (Bergkamp et al., 2003).

Referencias:

Bergkamp, G. J. J., Orlando, B., & Burton, I. (2003). Change: adaptation of water resources management to climate change. IUCN.

 

Christiansen, L., Martínez, G. & Naswa, P. (2018.) Sistemas de medición de la adaptación: perspectivas sobre cómo medir, agregar y comparar los resultados de la adaptación. Asociación ONU Medio Ambiente-DTU, Copenhague.

 

Donatti, C., Martínez-Rodríguez, M., Fedele, G., Harvey, C., Andrade, A., Scorgie, S. & Rose, C.  (2021). Directrices para el Diseño, la implementación y el Monitoreo de Soluciones basadas en la naturaleza para la adaptación. Conservation International.

 

GIZ, UNEP-WCMC and FEBA. 2020. Guidebook for Monitoring and Evaluating Ecosystem-based Adaptation Interventions. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, Germany.

 

Hammill, A. & Dekens, J. (IISD), Leiter, T., Olivier, J., Klockemann, L., Stock, E. & Gläser A., (GIZ) (2014). Repositorio de Indicadores de Adaptación. Casos reales de sistemas de Monitoreo y Evaluación nacionales. IISD GIZ Bonn.

 

Leiter, T. (2017). The Adaptation M&E Navigator: a decision support tool for the selection of suitable approaches to monitor and evaluate adaptation to climate change. In evaluating climate change action for sustainable development (pp. 327-341). Springer, Cham.

 

INECC. 2019. Criterios para el monitoreo y evaluación de las medidas de adaptación al cambio climático. Nota técnica. Proyecto “Construcción de esquemas de monitoreo y evaluación de la adaptación en México para la formulación de políticas públicas basadas en evidencia” (INECC-CONACYT). Instituto Nacional de Ecología y Cambio Climático (INECC), México D.F.

 

INECC. 2020. Nota Técnica: Propuesta de indicadores para el Monitoreo y Evaluación de la adaptación al cambio climático en México. Instituto Nacional de

Ecología y Cambio Climático (INECC), México D. F.

 

Vuille, M. (2013). El cambio climático y los recursos hídricos en los Andes tropicales. Banco Interamericano de Desarrollo, 21.

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Estudio de Línea Base sobre la Seguridad Hídrica en Ecuador

¿Cómo citar este documento?

Ochoa-Tocachi, BF; Galeas, R; Coronel, L; Ochoa-Tocachi, E; Lizárraga-Rossell, A; (2022). Estudio de Línea Base sobre la Seguridad Hídrica en Ecuador. ATUK Consultoría Estratégica, The Nature Conservancy, Coalición por la Seguridad Hídrica del Ecuador, Quito, Ecuador.

Enlace a Story Maps:

Mira los resultados de este estudio de forma interactiva en: https://arcg.is/1SbO4y3

Resumen Ejecutivo

La Alianza Latinoamericana de Fondos de Agua, en su trabajo de contribuir a la seguridad hídrica de América Latina y el Caribe, apoyó al diseño y establecimiento de la Coalición por la Seguridad Hídrica del Ecuador como una asociación voluntaria de actores públicos, privados, académicos y de la sociedad civil que buscan trabajar colaborativamente para alcanzar la seguridad hídrica. La mesa de trabajo de Ciencia y Conservación de la Coalición estableció como prioridad realizar un estudio de línea base sobre la seguridad hídrica en el Ecuador. El presente estudio establece una línea base de la seguridad hídrica a nivel nacional usando información secundaria y utilizando como referencia la metodología e indicadores desarrollados por la Alianza.

La Seguridad Hídrica es la capacidad de cuidar la integridad de los ecosistemas para asegurar el recurso hídrico en cinco ámbitos: (1) Ambiental: restaurar y proteger los ríos, acuíferos y ecosistemas saludables tanto terrestres como acuáticos, y tanto en el ámbito hidrológico como ecológico y ambiental integral en comunidades rurales y urbanas; (2) Doméstico: satisfacer las necesidades de los hogares de provisión y saneamiento y agua residuales; (3) Productivo: recurso que contribuya con actividades productivas tales como la agricultura, industria, energía, entre otros; (4) Urbano: permitir el desarrollo de ciudades y pueblos saludables; y, (5) Resiliencia: construir comunidades resilientes que pueden adaptarse a eventos hidrometeorológicos extremos y aportar a la reducción de riesgos.

 

Este estudio parte de la metodología propuesta por la Alianza, la cual utiliza un enfoque de tablero en estas múltiples “dimensiones clave”. El presente estudio mejora por sobre la propuesta original y propone el cálculo de un indicador por cada dimensión empleando información secundaria disponible a escala nacional. Las variables utilizadas en este estudio son:

El promedio nacional de seguridad hídrica total es de 3.09 puntos, lo que corresponde a una seguridad hídrica moderada (siendo 0: seguridad hídrica nula y 5 seguridad hídrica máxima).

Los resultados obtenidos para las cinco dimensiones de la seguridad hídrica muestran un patrón diverso de resultados. La escala de colores va desde el azul, alta seguridad hídrica; hasta el rojo, baja seguridad hídrica. Siguiendo la metodología base de la Alianza, valores cercanos a cero (p.ej., baja escasez hídrica) corresponden a mejor seguridad hídrica que aquellos valores cercanos a uno (p.ej., escasez hídrica severa), que corresponden a peor seguridad hídrica.

 

La seguridad hídrica ambiental promedio en el país alcanza 3.48 puntos categorizándose como moderada. Esto es resultado principalmente de la pérdida de ecosistemas naturales terrestres y acuáticos y la extensión de actividades antrópicas, concesiones para actividades extractivas y degradación del suelo. Existen algunas iniciativas de conservación ambiental, así como de implementación de medidas de conservación del agua y suelo que compensan los efectos negativos. La seguridad hídrica doméstica alcanza un promedio de 3.32 puntos categorizándose como moderada. La seguridad hídrica doméstica se ve afectada por la cobertura del servicio de agua potable en zonas más remotas, una cobertura deficiente del servicio de alcantarillado en general, la continuidad de los servicios de agua potable y saneamiento, así como fallas eventuales en análisis de calidad fisicoquímicos y microbiológicos del agua para consumo humano. La seguridad hídrica económica promedio en el país se califica con 2.36 puntos, el puntaje más más bajo de las cinco dimensiones analizadas, correspondiente a una categoría de baja seguridad hídrica. Este es el resultado de un alto estrés hídrico (demanda de agua por encima de la oferta hídrica) y la presión de diferentes actividades económico-productivas que dependen del agua como generación hidroeléctrica, industria, riego y tierras con aptitud productiva. La seguridad hídrica urbana promedio en el país se califica con 2.79 puntos, también en una categoría baja. Esto es el resultado de la presencia de enfermedades relacionadas con el agua como la Hepatitis A y la fiebre tifoidea, el alto consumo promedio de agua por habitante en general en el territorio nacional, el poco tratamiento de las aguas residuales, y que la mayor parte del territorio nacional no cuenta con mecanismos de protección de fuentes de agua, tales como fondos de agua. Finalmente, la seguridad hídrica ante desastres promedio se califica con 3.26 puntos, resultando en una categoría moderada. La resiliencia ante desastres se ve comprometida debido a la susceptibilidad a varios eventos extremos o desastres naturales potenciales como movimientos de masa, inundaciones, sequías, incendios, así como a potenciales efectos del cambio climático manifestados a través de altas temperaturas y lluvias intensas.

 

En general, ninguna de las dimensiones de la seguridad hídrica muestra valores altos o muy altos a escala nacional.

Es notable que las cuencas en las que se encuentran ciudades importantes del país como Quito, Guayaquil, Manta y Portoviejo sean las de más baja seguridad hídrica.

La demarcación hidrográfica (D.H.) del Pastaza es aquella con la mayor puntuación de seguridad hídrica en el país, alcanzado 3.77 puntos, pero todavía considerada con un nivel moderado. Ninguna D.H. en el país alcanza una categoría de seguridad hídrica total alta (puntaje mayor o igual a 4.00) o muy alta (puntaje de 5.00). Otras D.H. en la categoría de seguridad hídrica moderada son la de Napo (3.74 puntos), Santiago (3.57 puntos) y Mira (3.27 puntos). Otras D.H. se encuentran en la categoría de seguridad hídrica baja, incluyendo Puyango–Catamayo (2.79 puntos), Jubones (2.76 puntos), Esmeraldas (2.32 puntos), Guayas (2.20 puntos) y Manabí (2.13 puntos). No existen D.H. clasificadas como de muy baja seguridad hídrica.

Si bien cada dimensión de la seguridad hídrica puede utilizarse para priorizar áreas de acción (p.ej., ambiental), utilizamos los resultados de la seguridad hídrica nacional total para determinar las áreas prioritarias para tomar acciones que incrementen la seguridad hídrica en el país.

Es necesario resaltar que la conservación y restauración de la seguridad hídrica multidimensional, no se limita a conceptos ambientales.

PRIORIDAD DE RESTAURACIÓN DE SEGURIDAD HÍDRICA

km2

ALTA

55 300

MUY ALTA

26 937

TOTAL

82 238

 

 

PRIORIDAD DE CONSERVACIÓN DE SEGURIDAD HÍDRICA

km2

ALTA

62 177

MUY ALTA

34 454

TOTAL

96 631

Áreas clasificadas con una seguridad hídrica baja y muy baja deben ser atendidas con acciones de restauración y recuperación con el fin de mejorar las condiciones ambientales, domésticas, económicas, sociales y de resiliencia que determinan la seguridad hídrica. Estas áreas se encuentran principalmente en la zona occidental del país y particularmente en las provincias de Guayas, Bolívar, Los Ríos, Esmeraldas y Manabí. De forma similar, áreas clasificadas con una seguridad hídrica alta y muy alta deben ser conservadas con acciones de protección y mantenimiento de las condiciones ambientales, domésticas, económicas, sociales y de resiliencia que determinan su estado de seguridad hídrica. Estas áreas se encuentran principalmente en la zona oriental del país y particularmente en las provincias de Pastaza, Napo Orellana, Zamora Chinchipe, Azuay, Tungurahua, Sucumbíos y Morona Santiago.

 

Es claro el contraste entre las zonas de baja y muy baja seguridad hídrica (cordillera occidental y zona costera del Ecuador) y aquellas zonas de alta y muy alta seguridad hídrica (cordillera oriental y zona amazónica del Ecuador).

Estos resultados, si bien muy interesantes y valiosos, deben ser validados en campo. Adicionalmente, recomendamos realizar evaluaciones periódicas (p.ej., cada 5 años) para evidenciar cambios por sobre esta línea base. Además, se deben considerar variables que son importantes, pero de las que actualmente no se dispone de información: p.ej., ecosistemas de agua dulce, enfermedades relacionadas con el agua, conflictos sociales o valores culturales.

 

Es necesario reconocer que este análisis se realiza a escala nacional. Para tomar acciones específicas e incluso para conocer las particularidades de cuencas, subcuencas o microcuencas en donde implementar actividades, se debe realizar un análisis detallado más exhaustivo a la escala local. Las áreas identificadas aquí presentan un primer insumo para determinar zonas prioritarias de acción que deben ser atendidas de manera prioritaria a alto nivel.

 

Estos resultados contemplan el territorio continental, exceptuando la región insular, debido a que no se dispone de información de específica para las Islas Galápagos. Prácticamente toda la información de variables disponibles está limitada al área continental. Recomendamos que, a futuro, se explore la posibilidad de trabajar la región insular de manera específica.

En conclusión, este estudio ha permitido generar una línea base de la seguridad hídrica nacional que esperamos pueda ser aprovechado y tomado por actores relevantes institucionales y personales que puedan valerse de esta información y resultados para priorizar e implementar acciones en territorio con el fin de incrementar la seguridad hídrica en el país. Esperamos que estos resultados puedan ser acogidos por la Coalición para la Seguridad Hídrica y por sus instituciones constituyentes para tomar acciones efectivas en torno a la seguridad hídrica nacional.

Declaración


“Este producto está cofinanciado por la Iniciativa Internacional de Protección del Clima (IKI) del Ministerio Federal de Medio Ambiente, Protección de la Naturaleza y Seguridad Nuclear (BMU) a través del Banco Interamericano de Desarrollo que actúa como administrador dentro de La Alianza Latinoamericana de Fondos de Agua. Las opiniones expresadas en este producto son las de los autores y no reflejan necesariamente los puntos de vista de IKI, BMU o BID, su Junta Directiva o los países que representan”.

Referencias:

Asian Development Bank, 2020. Asian Water Development Outlook 2020: Measuring Water Security in Asia and the Pacific. Mandaluyong City, Philippines: Asian Development Bank.

 

Banco Interamericano de Desarrollo, 2020. Agua para el futuro: estrategia de seguridad hídrica para América Latina y el Caribe / Fernando Bretas, Guillermo Casanova, Thomas Crisman, Antonio Embid, Liber Martin, Fernando Miralles, Raúl Muñoz.

 

Banco Interamericano de Desarrollo, 2019. A CLEWS Nexus modeling approach to assess water security trajectories and infrastructure needs in Latin America and the Caribbean / Raúl Muñoz-Castillo, Fernando Miralles-Wilhelm, Kleber Machado. (IDB Working Paper Series; 932).

 

Falkenmark, M., et al., 1989. Macro-scale water scarcity requires micro-scale approaches. Natural Resources Forum, 13, 258–267.

 

Hofste, R., et al., 2019. Aqueduct 3.0: Updated Decision- Relevant Global Water Risk Indicators. Technical Note. Washington, DC: World Resources Institute. Disponible en: https://www.wri.org/publication/aqueduct-30.

 

Huang, Z., et al., 2018. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences, 22, 2117–2133.

 

Miralles-Wilhelm et al., 2022. Assessing Water Security Through a Set of Consistent Metrics and Application to Water Funds in Latin America. Current Trends in Civil & Structural Engineering, CTCSE.MS.ID.000704.

 

López M., 2012. Unidad Mínima Cartografiable. Accedido de: https://www.slideshare.net/leugimxw/unidad-mnima-cartografiabl

 

Santos V., 2020. Desastres relacionados con la seguridad hídrica: su conexión con la salud pública en las Américas 2000-2019, nota técnica 14. Seguridad Social para el Bienestar. Accedido de: https://ciss-bienestar.org/wp-content/uploads/2020/12/desastres-relacionados-con-la-seguridad-hidrica.pdf

 

TNC, 2018. Water Funds Toolbox. Accedido de: https://waterfundstoolbox.org el 3 de mayo de 2022.

 

UN-Water, 2013. Analytical Brief on Water Security and the Global Water Agenda.

 

World Bank, 2017. Chart: Globally, 70% of Freshwater is Used for Agriculture. Accedido de: https://blogs.worldbank.org/opendata/chart-globally-70-freshwater-used-agriculture el 3 de mayo de 2022.

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Eventos del IPCC sobre impactos, adaptación y vulnerabilidad para Latinoamérica

El grupo de trabajo I del Panel Intergubernamental sobre el Cambio Climático (IPCC) entregó su informe sobre la base científica física del cambio climático en agosto de 2021, el grupo de trabajo II publicó su informe sobre impactos, adaptación y vulnerabilidad en febrero de 2022 y el grupo de trabajo III publicó su contribución sobre mitigación del cambio climático en abril de 2022. Todos los reportes contribuyen al informe de síntesis AR6 que se publicará a fines de 2022 o principios de 2023. Estos informes presentan evidencia importante sobre los impactos del cambio climático en nuestros sistemas naturales y humanos y las posibles soluciones y caminos necesarios hacia un desarrollo sostenible. El cambio climático, al ser transversal a todas las ciencias, requiere una divulgación de estos informes a la comunidad científica, las partes interesadas y el público en general. Aquí comentaremos sobre algunos eventos oficiales de divulgación del IPCC para América Latina (Ministerio del Ambiente, 2022; NovoPangea, 2022; NovoPangea LATAM,2022; REGATTA PNUMA, 2022).

El mensaje más importante entregado en todos los eventos y por muchos oradores es la principal conclusión de los informes del IPCC que enfatizan nuestra responsabilidad como seres humanos sobre el cambio climático y las acciones urgentes para elegir un nuevo camino que asegure un futuro habitable. Varios disertantes de los eventos señalaron los avances de estos informes AR6 en comparación con informes anteriores que incluyen una mayor participación de autoras (45%), autores de países en desarrollo (43%) y una mayor presencia de las dimensiones humanas del cambio climático.

En cuanto a los impactos, la adaptación y la vulnerabilidad presentados en los eventos de divulgación para la región del Noroeste de América del Sur (NWS), se trataron en su mayoría en torno a la idea de sistemas naturales y humanos acoplados. El ser humano provoca cambios climáticos que generan impactos y riesgos al medio ambiente y consecuentemente a la vida humana. Sin embargo, los humanos también pueden ser los que restauran y conservan los entornos para evitar daños mayores. El riesgo fue un aspecto crítico abordado en los eventos de divulgación al desagregarlo en sus componentes: amenazas, exposición y vulnerabilidad. En la región del NWS ya se han observado diversos impactos como aumentos en la temperatura media, olas de calor y niveles oceánicos y sus consecuentes impactos en el agua, los ecosistemas, la seguridad alimentaria, la salud humana y la migración (IPCC, 2022). Se prestó especial atención a los sistemas humanos en los eventos de divulgación, con exposiciones sobre migración y desigualdad de género. La migración de las áreas rurales a las ciudades ocurre principalmente debido a la centralización de oportunidades en las principales ciudades de la región. Los Andes, es un ejemplo de un lugar donde la migración se intensificó debido al cambio climático y a los desafíos socioeconómicos en la región rural. La migración observada hacia las ciudades ha mostrado ser un proceso fallido. Los migrantes son marginados en las ciudades, comúnmente viven en lugares inseguros y precarios debido a la falta de trabajos decentes para ciudadanos locales y extranjeros. En cuanto a la desigualdad de género, se ha establecido que las mujeres han sufrido más que los hombres los impactos del cambio climático, especialmente los que afectan a la agricultura y la higiene, además de su falta de capacidad migratoria. Estos impactos observados se intensificarán en el futuro si no se toman medidas. Son parte del cambio climático antropogénico que componen las amenazas.

En la región de NWS, como en otros países en desarrollo del mundo, la vulnerabilidad es alta debido a la pobreza, los desafíos de gobernabilidad, el acceso limitado a los servicios básicos, los conflictos violentos y los medios de vida sensibles al cambio climático. Sectores de la población como comunidades rurales, agricultores, ganaderos y comunidades pesqueras viven en la pobreza, la inequidad y la marginación. También viven en lugares más expuestos a desastres. En resumen, los eventos climáticos extremos junto con una alta vulnerabilidad y exposición resultan en un alto riesgo.

Las estrategias de adaptación y mitigación para reducir los riesgos antes mencionados deben integrarse con la conservación y restauración de la biodiversidad y el logro de los objetivos de desarrollo sostenible. Esto evitará la contradicción entre las estrategias de adaptación y mitigación y creará oportunidades de desarrollo sostenible. Un buen ejemplo de este tipo de estrategias es la conservación de los ecosistemas y la biodiversidad. Por lo tanto, el concepto de desarrollo de resiliencia climática (CRD, por sus siglas en inglés) se comunicó durante los eventos de divulgación haciendo especial énfasis en los diversos caminos que las sociedades pueden elegir hacia el desarrollo (Figura 1). Algunos caminos verdes hacia una mayor resiliencia climática ya no están disponibles pues se ha perdido la oportunidad de tomarlos debido a la continua emisión de gases de efecto invernadero; pronto, otros caminos también serán inalcanzables, por lo tanto, se hace un llamado urgente a la acción.

Ipcc en latinoamerica | Atuk

Figura 1: Vías de desarrollo de la resiliencia climática tomadas del Capítulo 18 de la contribución del grupo de trabajo II al Sexto informe de Evaluación del IPCC (IPCC, 2022).

Una contribución importante de los eventos de divulgación a la discusión local sobre el cambio climático es la posibilidad de pasar del carácter descriptivo de los informes del IPCC y recomendaciones ocasionales a los pensamientos y propuestas de los expositores que incluyen visiones y perspectivas locales. Por ejemplo, los oradores mencionaron la importancia de los enfoques de abajo hacia arriba en la adaptación, lo que significa que el conocimiento de las comunidades indígenas puede ayudar a construir estrategias de adaptación más sólidas y prácticas, también es importante una participación real de los habitantes en la planificación de estrategias para implementar la adaptación. Además, se propusieron que los planes de adaptación deben considerar una visión interseccional de la desigualdad que incluya el género, pero también la edad, la etnia, las clases sociales y la ubicación. Los planes de adaptación también deben considerar que la migración de las áreas rurales a las ciudades no ha tenido éxito, por lo que es clave brindar mejores oportunidades en las áreas rurales. Estos pensamientos son especialmente importantes para los estudios locales, ya que los individuos y las comunidades se relacionan con el cambio climático de diferentes maneras según las estructuras de poder establecidas en cada contexto. Los desafíos especiales para la adaptación en los países en desarrollo surgen también de la falta de financiación, que es desigual en comparación con los países desarrollados y, por lo general, se centra en la mitigación. Sin embargo, también necesitamos acciones para fortalecer instituciones flexibles en los sectores público y privado y grupos sociales, construcción de capacidades, inversión en recursos humanos, acciones vinculadas a problemas de desarrollo, acceso a la información y diferentes tipos de conocimiento, gobernanza inclusiva, seguimiento y evaluación de adaptación (no toda adaptación tiene efectos positivos y necesitamos evaluarlos para proponer correcciones), ciencia transdisciplinaria que lleve a herramientas útiles y accesibles para los tomadores de decisiones.

Más allá de las nuevas teorías y formas de mostrar los caminos correctos hacia el desarrollo sostenible, como el concepto de resiliencia climática y muchos conceptos anteriores (por ejemplo, economía verde, modelo de economía de donas, etc.), necesitamos un cambio de paradigma. Esto incluye cambiar la forma en que nos relacionamos con la naturaleza. Como se mencionó, el conocimiento indígena puede ser clave en este aspecto. El equilibrio con la naturaleza se puede lograr con su visión de que los humanos estamos conectados en una red única en la que nuestras acciones tienen consecuencias en la naturaleza; a su vez, la naturaleza brinda servicios que solo podemos tener si protegemos los ecosistemas y mantenemos ese equilibrio. No existen soluciones tecnológicas para el cambio climático que los tomadores de decisiones puedan adoptar rápidamente, necesitamos una nueva forma de pensar. Parece que la única solución para ese cambio es educar a los jóvenes de nuestra sociedad para que tengan seres humanos con una visión conectada con la naturaleza que les permita tomar mejores decisiones.

Finalmente, los eventos de divulgación son importantes para dar a conocer a una amplia audiencia las bases de la ciencia climática, los impactos y las estrategias de adaptación y mitigación. Fue interesante ver que algunos de estos eventos se llevan a cabo entre científicos y otros sectores, como tomadores de decisiones. Esto es clave para que estos últimos presenten sus planes y propuestas y comprueben por sí mismos si están alineados con la evidencia y las recomendaciones del IPCC. Los científicos también tuvieron la oportunidad de contrarrestar las ideas de los tomadores de decisiones al afirmar que los planes deben implementarse, monitorearse y evaluarse y que las áreas rurales necesitan atención especial. El público en general también puede evaluar las contradicciones o similitudes entre los discursos de científicos y tomadores de decisiones. Un desafío importante que aún está pendiente es comunicar efectivamente los reportes a la audiencia pública. Surge la pregunta sobre cómo implementar acciones de cambio climático junto con las comunidades locales de los países en desarrollo donde se encuentran desafíos aún grandes, desde cubrir sus necesidades básicas.

Referencias:

IPCC. (2022). Climate Change 2022. Impacts, Adaptation and Vulnerability. (AR6 ed.). https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_FinalDraft_FullReport.pdf

Ministerio del Ambiente, A. y T. E. del E. (2022). Conversatorio: Sexto Informe de Evaluación de los impactos, adaptación y vulnerabilidad al cambio climático del Panel Intergubernamenteal de Expertos de Cambio Climático (IPCC). https://www.facebook.com/AmbienteEc/videos/1328801937587261

NovoPangea. (2022). Conferencia NovoPangea LATAM y el Caribe 2022 | Día 2. Retrieved June 27, 2022. from https://www.youtube.com/watch?v=UYS9K888t5A

NovoPangea LATAM. (2022). Conferencia NovoPangea LATAM y el Caribe 2022 | Día 1. Retrieved June 27, 2022, from https://www.youtube.com/watch?v=QLz1ntgDv_o&t=2499s

REGATTA PNUMA. (2022). Informe del IPCC 2022, Mitigación: Implicaciones y cómo cumplir las metas de descarbonización en ALC – YouTube. https://www.youtube.com/watch?v=bZU9rrp9rb0

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Descubrimiento de un sistema de agua subterránea salada debajo de la corriente de hielo Antártico

La existencia de cientos de lagos y ríos líquidos interconectados acunados dentro del hielo Antártico es de conocimiento desde inicios del milenio (Siegert et al., 2005), así mismo se sabe que el agua derretida de estos sistemas lubrica las bases de los glaciares, jugando un rol fundamental en la regulación de la velocidad del movimiento de hielo aguas abajo. Durante las ultimas décadas, debido a la falta de observaciones, nuestro conocimiento de la corriente de agua de hielo subterráneo Antártico se limitaba a las porciones poco profundas cerca de la interfaz del lecho de hielo. Sin embargo nuevos señalan las interacciones de agua subterranea profunda sobre este sistema/con la corriente de hielo, al confirmar la presencia de grandes cantidades de agua liquida en los sedimentos debajo del hielo.

El estudio, publicado el 6 de mayo de este año en la revista Science se llevó a cabo entre Noviembre de 2018 y Enero de 2019 por un equipo conformado por científicos de la Universidad de Columbia. Ellos lograron mapear in-situ por primera vez un sistema enorme de agua subterránea dentro de una cuenca sedimentaria de más de un kilómetro de espesor ubicada debajo corriente de hielo Whillans, ubicada en Antártida Occidental.

Figura 1: Chloe Gustafson, estudiante de postgrado y la alpinista Meghan Seifert instalando una estación magnetotelúrica (Key, 2019).

Por años, el uso de radares y otros instrumentos geofísicos han permitido obtener imágenes de las características del subsuelo Antártido, revelando cuencas sedimentarias intercaladas entre el hielo y la roca madre. Sin embargo, estas tecnologías presentan limitaciones pues solo permiten revelar los contornos aproximados, mas no el volumen de agua. Por otro lado, estudios que emplean métodos electromagnéticos (EM) han demostrado gran efectividad para el mapeo de agua subterránea pero solo dentro de los primeros cientos de metros de ambientes subglaciales. Como uno llevado a cabo en 2019 en los valles secos de McMurdo (Antártida) que logró documentar agua subterránea subglacial bajo menos de 350 metros de hielo (Foley et al., 2019). Sin embargo, la mayoria de cuencas sedimentarias conocidas en la Antártida son mucho más profundas y la mayor parte de su hielo es mucho más grueso, mas alla del alcance de este tipo de tecnologías.

Este estudio empleó por primera vez para estos propósitos, métodos magnotelúricos (MT) para colectar data en la salida de la corriente de hielo Whillans. Este método utiliza variaciones temporales naturales de los campos magnéticos y eléctricos de la Tierra para medir la resistividad eléctrica del en diferentes superficies, tales como hielo, sedimentos, agual dulce, agua salda y el lecho rocoso; permitiendo crear mapas de los diferentes elementos, tal como una resonancia magnética. Las lecturas fueron tomadas en pozos en mas de cuatro decenas de ubicaciones. Adicionalmente, se empleó data sísmica pasiva para ayudar a distinguir el lecho rocoso, los sedimentos y el hielo.

Figura 2: Pruebas para la instalación de un magnetómetro en la estación McMurdo (Key, 2019).

El estudio confirmó la presencia de agua líquida contenida dentro de los sedimentos. El análisis mostró que si se extrajera el agua de los sedimentos, se podría formar una columna de agua equivalente a 220 a 820 metros de altura. Este estudio también demostró disminución en la salinidad del agua subterránea a medida que la profundidad aumentaba. Esto se explicaría pues se cree que los sedimentos se formaron en un ambiente marino hace mucho tiempo, cuando el área de estudio estuvo cubierta por el océano hace unos 5000 a 7000 años, saturando los sedimentos con agua salada. Se cree que hoy en día el agua del hielo en la parte superior que se va derritiendo y filtrando, se mezcla con el agua de los sedimentos superiores. Demostrando la conexión física entre el sistema hidrológico profundo y superficial de hielo. Los investigadores dicen que este drenaje lento de agua dulce en los sedimentos podría evitar que se acumule agua en la base del hielo, actuando como un freno en el movimiento de avance del hielo. Así mismo, se plantea que si la superficie del hielo adelgazara, una posibilidad clara a medida que el clima se calienta, el agua profunda podría ascender hacia la parte superior del sistema. Esto podría lubricar aún más la base del hielo y aumentar su movimiento hacia adelante, el cual ya es de un metro por día.

La confirmación de la dinámica existente en el agua subterránea profunda ha transformado el entendimiento del comportamiento del flujo de hielo y conlleva a modificaciones de los modelos subglaciales de agua. Pues supone que agua superficial ascendente es otra fuente potencial de agua y calor. Se plantea también que si el agua subterránea comienza a moverse hacia arriba, transportaría oxígeno disuelto o carbono inorgánico utilizado por microbios encontrados en los sedimentos poco profundos, hacia la parte más superficial del sistema. Adicionalmente, se sugiere la existencia de flujo de agua subterránea lateral. El cual contiene no solo agua salina, pero también microbios marinos y cabono que se acumuló cuando los sedimentos marinos fueron depositados. Este carbono acumulado ingresando directamente al océano posiblemente convertiría a la Antártida en una fuente de carbono hasta ahora no considerada, afectando ademas la circulación del océano y sus dinámicas.

Referencias:

Columbia Climate School. (2022, Mayo 5). In sediments below Antarctic ice, scientists discover a giant groundwater system: Previously unmapped reservoirs could speed glaciers, release carbon. Recuperado Mayo 20, 2022 de www.sciencedaily.com/releases/2022/05/220505143225.htm

Electromagnetic Geophysics Laboratory. (n.d.). Salsa EM: Mapping Subglacial Groundwater in Antarctica. Recuperado Mayo 5, 2022, de https://emlab.ldeo.columbia.edu/index.php/projects/subglacial-em-mapping/

Foley, N., Tulaczyk, S. M., Grombacher, D., Doran, P. T., Mikucki, J., Myers, K. F., Foged, N., Dugan, H., Auken, E., & Virginia, R. (2019). Evidence for Pathways of Concentrated Submarine Groundwater Discharge in East Antarctica from Helicopter-Borne Electrical Resistivity Measurements. Hydrology, 6(2), 54. https://doi.org/10.3390/hydrology6020054

Gustafson, C. D., Key, K., Siegfried, M. R., Winberry, J. P., Fricker, H. A., Venturelli, R. A., & Michaud, A. B. (2022). A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science, 376(6593), 640–644. https://doi.org/10.1126/science.abm3301

Key, K. (2022, Mayo 5). In Sediments Below Antarctic Ice, Scientists Discover a Giant Groundwater System. State of the Planet. https://news.climate.columbia.edu/2022/05/05/in-sediments-below-antarctic-ice-scientists-discover-a-giant-groundwater-system/

Siegert, M., Carter, S., Tabacco, I., Popov, S., & Blankenship, D. (2005). A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17(3), 453-460. doi:10.1017/S0954102005002889

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

¿Cómo escribir policy briefs?

¿Qué es un resumen de políticas? (policy brief)

• Los resúmenes de políticas son HERRAMIENTAS para presentar investigaciones y recomendanciones a una AUDIENCIA NO ESPECIALIZADA.

• Sirven como un vehículo para proveer asesoría a la creación de POLÍTICAS BASADAS EN EVIDENCIA y ayudar a la TOMA DE DECISIONES informada.

• Un buen resumen de políticas FILTRA los hallazgos de investigación, los ELEVA a un lenguaje simple y encuentra VÍNCULOS CLAROS con iniciativas de política.

• Los mejores resúmenes de políticas son documentos independientes, CLAROS y CONCISOS que se enfocan en un único tema.

 

¿Qué NO es un resumen de políticas?

• Un resumen de políticas NO ES UNA “TRADUCCIÓN” simple y directa de un artículo científico. 

• NO es un instrumento de PROPAGANDA o EGO de una institución, un grupo de investigación o de personas específicas.

• NO es una VERSIÓN “PLANA” o FORZADA de una investigación SIN VÍNCULOS CLAROS con la política o SIN RECOMENDACIONES para la toma de decisiones.

• NO ES UN COMPENDIO de investigaciones, SIN UN PROPÓSITO político claro.

• NO tiene JERGA académica ni es DIFÍCIL DE LEER para una audiencia no especializada. 

¿Qué es la política (policy not politics)?

• La política es el conjunto de actividades que se asocian con la TOMA DE DECISIONES en grupo u otras formas de RELACIONES DE PODER entre individuos.

• También es el arte, doctrina o práctica referente al gobierno de los Estados, promoviendo la PARTICIPACIÓN CIUDADANA al poseer la capacidad de DISTRIBUIR Y EJECUTAR EL PODER según sea necesario para garantizar el BIEN COMÚN en la sociedad.

Resumen de políticas VS. Artículo científico

Un resumen de políticas es más ”PROFESIONAL” porque está enfocado hacia una audiencia que tiene solo un tiempo limitado para tomar una decisión práctica.

Los resúmenes de políticas están cargados al inicio: ¡Las conclusiones se encuentran en la página de portada!

La página de portada necesita un resumen ejecutivo que proporcione una descripción general concisa (1 o 2 párrafos) del objetivo del documento y las recomendaciones principales.


El propósito principal de un resumen de políticas es convencer a una audiencia de la urgencia de un problema presente y de la necesidad de adoptar la alternativa preferida o curso de acción presentada y, por lo tanto, servir como un impulso para la acción.

Un artículo científico es más “ACADÉMICO” porque presta más atención a las raíces académicas de argumentos particulares y juzga su mérito bajo criterios intelectuales y lógicos.

Los artículos científicos están cargados al final: los resultados y conclusiones se encuentran hacia el final de su contenido.


La página de portada de un artículo científico contiene un
“abstract” o resumen que usualmente consiste en un solo párrafo de 100 a 300 palabras donde se pone énfasis en los métodos utilizados y en los resultados obtenidos.


El propósito principal de un artículo científico es el de presentar conocimiento nuevo. Está dirigido a especialistas en la(s) rama(s) académica(s) de la investigación y es revisado por pares, quienes evalúan la consistencia y robustez de los métodos y argumentos de análisis de resultados.

Características de un resumen de políticas persuasivo y efectivo

Como todas las herramientas de marketing, la clave para el éxito es APUNTAR A LA AUDIENCIA PARTICULAR del mensaje.

La audiencia más común de un resumen de políticas son tomadoras/es de decisiones, pero también el documento puede apoyar iniciativas más amplias apuntando a una audiencia extensa pero profesional (p.ej., periodistas, diplomáticos/as, administradores/as, investigadores/as).

Un resumen de policías efectivo, que cumple su propósito , comúnmente es:

1.-Planificación

Elementos vitales en un resumen de políticas efectivo:

Propósito

Informar a la audiencia de un problema particular, sugerir
posibles opciones de políticas, y dar recomendaciones.


Ser frontal en el propósito desde el principio:
• Mantener el enfoque en la dirección deseada siempre.
• Comunicar la urgencia del problema.
• Resaltar los beneficios y ventajas de seguir la recomendación de
política descrita.

Consejos sobre el propósito:

• Escribir el propósito ANTES de hacer un borrador del
resumen de políticas para asegurar que todo lo que se escribe
sirve a dicho propósito.


• Mantener el enfoque en el problema específico que se trata
de solucionar.

Audiencia

• Los resúmenes de políticas deben ser accesibles y apuntar a
una audiencia específica.
• Antes de empezar a escribir, establecer:
• Quiénes son los/as posibles lectores/as (y audiencia deseada).
• Sus intereses y nivel de conocimiento sobre el tema.
• La información que necesitarán para tomar una decisión.
• Su apertura a recibir recomendaciones (tuyas).

Contenido

• Un resumen de políticas debe ser claro, conciso y enfocado en un único tema.

Consejos sobre el Contenido.

• Un resumen corto no excede 1,500 palabras o 2 páginas.
• Un resumen largo no excede 3,000 palabras, o 6-8 páginas.
• Evitar ir por la tangente o describir mucho la metodología.
• Escribir un documento NUEVO para cada propósito, en lugar de tratar de reciclar, resumir o cortar un reporte ya existente.
• Usar LENGUAJE simple.

Estructura

• La estructura debe guiar al/a lector/a desde el problema hacia
la solución.
• Ser claro acerca de las recomendaciones de políticas y cómo
están soportadas por evidencia.
• Debe ser específico para la audiencia y reflejar los intereses de
cada audiencia diferente.

Consejos sobre la Estructura

• Algunos encabezados de secciones típicas son: resumen,
contexto, análisis o discusión, consideraciones, conclusiones y
recomendaciones.

1.-Formato

No hay un formato unció por que los temas y las audiencias van a determinar la forma  de cada resumen de políticas. CLAVE:

Resumen ejecutivo

Todo resumen de políticas debe abrir con una síntesis corta.
• Esto puede ser a través del uso de bullet points o de uno o dos párrafos cortos.

• Independientemente del estilo elegido, condensar la esencia del resumen en pocas oraciones.

• El resumen ejecutivo apunta a convencer más al/la lector/a de que
vale la pena leer a profundidad el resumen de políticas.

• Es especialmente importante para una audiencia que tiene poco
tiempo el ver claramente la relevancia e importancia del documento
al leer el resumen ejecutivo. Puede incluir:


• 1. Una descripción del problema enfocado;
• 2. Un enunciado de por qué el enfoque o política actual necesita cambiar;
• 3. Recomendaciones para tomar acción.

 

Consejos sobre el resumen ejecutivo

• El resumen ejecutivo siempre debe aparecer en la página de
portada o en la parte superior de la primera página, de manera
que es lo primero que el/la lector/a verá.

• Escribir el resumen ejecutivo al final puede ayudar, porque se
ganará claridad acerca de su contenido mientras se realiza el
borrador de las otras secciones.

Introducción

• La introducción debe enmarcar el resto del documento y transmitir claramente el argumento.

• El objetivo es dar a los/as lectores/as una sensación clara de qué se trata la investigación mientras se les anima a seguir leyendo.

Consejos sobre la introducción

• En uno o dos párrafos, definir por qué se está escribiendo el
resumen de políticas y expresar la urgencia e importancia del
tema a la audiencia.

• Describir las preguntas clave del análisis y las conclusiones.

Contexto e importancia del problema

• Este es una de las secciones más importantes porque explica el razonamiento detrás de las recomendaciones de políticas.

Describe el problema que se trata de solucionar.

• La longitud de la descripción del problema puede variar considerablemente entre documentos, dependiendo del estado del
proceso político enfocado.

Por ejemplo, se puede necesitar mayor extensión durante una etapa de evaluación que durante una etapa de selección de opciones de políticas.

• El propósito es convencer a la audiencia que un problema actual y urgente existe, y que requiere que tomen acciones.

Esta sección es la piedra angular del resumen de políticas.

• Usualmente, incluye:

•1. Un enunciado claro del problema enfocado.
•2. Una descripción corta de las raíces y causas del problema.
•3. Un enunciado claro de las implicaciones políticas del problema, que
establece claramente su importancia latente y su relevancia política.

Descripción General de la Investigación.

• Proveer un resumen de los hechos que describen el contexto y los métodos de investigación.

• Enfocarse en dos elementos principales:

• ENFOQUE de investigación: explicar cómo se condujo el estudio,
quién lo hizo, cómo los datos fueron recopilados, y otra información
relevante.

• RESULTADOS de investigación: presentar una visión general de los
hallazgos de la investigación antes de moverse a lo específico.

Consejos sobre el contexto del problema

• Evitar la JERGA y el lenguaje exageradamente técnico.

• Enfocarse en resaltar los beneficios y oportunidades que existen de solucionar el problema enfocado usando la investigación presentada.

Discusión de hallazgos y crítica de opciones

• Se deben detallar las limitaciones del enfoque actual o de las opciones que se están implementando y, por tanto, ilustrar la necesidad de un cambio. Enfocarse en dónde este cambio se necesita.

• La crítica de opciones de políticas usualmente incluye:

• 1. Una descripción corta de la(s) opción(es) de políticas enfocada(s).
• 2. Un argumento ilustrativo de por qué y cómo el enfoque actual falla.

• Es importante, en aras de la credibilidad, reconocer (aún sin coincidir) todas las opiniones del debate acerca del problema.

Consejos sobre la discusión y crítica

• Expresar las ideas usando lenguaje activo y afirmaciones.
• Explicar los HALLAZGOS y LIMITACIONES de la investigación.
• Describir los hallazgos de la investigación en términos de cómo se relacionan a REALIDADES CONCRETAS (en lugar de
abstracciones teóricas).

Conclusiones y recomendaciones de políticas

• Esta sección final debe detallar las acciones recomendadas por los hallazgos de la investigación:

• Mostrar el vínculo entre los hallazgos y las recomendaciones.

• Usar lenguaje persuasivo para presentar las recomendaciones, pero asegurar que todos los argumentos estén respaldados firmemente y
claramente en la evidencia producida por la investigación.

• Se desea que los/as lectores/as estén completamente convencidos que tu recomendación es el mejor consejo.

• Examinar las implicaciones y las recomendaciones producidas por la investigación:


• IMPLICACIONES son los efectos que la investigación podría tener en el futuro. Son un enfoque suave pero persuasivo de describir las consecuencias de políticas particulares.

• Continuar con las RECOMENDACIONES. Más allá de ser descriptivo/a, las recomendaciones deben actuar como un llamado a la acción, enunciando siguientes pasos precisos, relevantes, creíbles y factibles.

• A veces incluye un párrafo que vuelve a recordar la importancia de tomar acción.

Consejos sobre las recomendaciones

Pensar en la conclusión como un espejo de la introducción: se está ofreciendo una vez más de una descripción del argumento, pero esta vez se resalta su fortaleza en lugar de introducirlo.

Apéndices

• A pesar de que un resumen de políticas es corto y enfocado, a
veces se decide que el argumento necesita mayor soporte, para lo cual
se puede incluir un apéndice.

• Los apéndices solamente deben ser incluidos cuando es estrictamente necesario.

3. Diseño

• El diseño y presentación del resumen de políticas son consideraciones importantes para mantener al/a lector/a interesado/a. Incluye:

¿Cómo usar títulos y encabezados?

• Los títulos actúan como puntos de REFERENCIA para atraer a los/as lectores/as.
• Incluir subtítulos o encabezados para dividir el texto y llamar la ATENCIÓN del/a lector/a al tema principal de cada sección.
• Usar VERBOS para hacer los encabezados más dinámicos.
• Usar frases en encabezados a manera de PREGUNTAS para despertar la curiosidad del/a lector/a.
• Los encabezados deben contener información RELEVANTE sin ser muy extensos.

Barras laterales o cajas

• Las barras laterales añaden gran profundidad a la discusión principal y enganchan la atención del/a lector/a.
• Visualmente, ofrecen divisiones al documento para hacerlo más fácil de leer.
• Deben ser:
• Cortas.
• Descriptivas.
• Interesantes.
• Orientadas a la acción.

Listas

• Las listas son una manera efectiva y visualmente interesante de simplificar contenido denso.
• Criterios:
• No deben ser más largas que 5 a 7 bullet points.
• Cada bullet point debe expresar ideas completas.
• Evitar usar bullet points de solamente una o dos palabras.

Gráficos

• Los elementos visuales son una de las maneras más fáciles de hacer los resúmenes de políticas más interesantes para los/as lectores/as.
• Cada gráfico debe servir un propósito y ayudar a ilustrar el argumento.
• Se debe:
• Seleccionar gráficos de manera efectiva para la información que se desea comunicar.
• Incluir leyendas para las fotos y otros gráficos para explicar el contenido al/a lector/a.

4. Revisión

• Reflexionar una vez más en el propósito del resumen de políticas, su audiencia, contenido y estructura.

• ¿El resumen de políticas ayudará a alcanzar los objetivos?

• Probarlo:

• Tratar de explicarlo en un pitch de 20 segundos para evaluar qué información sobresale.

• Hacerlo tan accesible como sea posible retirando jerga y estadísticas que lo hagan menos agradable.

• Preguntar a un/a colega sin conocimiento previo del problema que lo lea y ofrezca retroalimentación.

5. Uso y evaluación

• Un buen resumen de políticas puede cumplir un doble papel: ser un documento independiente así como un complemento efectivo a una presentación.

• Probar:

• Adaptar una presentación visual al resumen de políticas para enfocarse solamente en los puntos clave y responder preguntas importantes (p.ej., webinar de lanzamiento).

• Evitar repetir todo el texto del resumen de políticas en la presentación.

• Cuando se distribuya el resumen de políticas, desarrollar un paquete corto de preguntas-y-respuestas y una sección de “leer más”.

Referencias:

• IRC, 2021. How to write a policy brief: https://www.idrc.ca/en/how-write-policy-brief
• CBMS, 2011. Guidelines for Writing a Policy Brief http://www.pep-net.org/sites/pep= net.org/files/typo3doc/pdf/CBMS_country_proj_profiles/Philippines/CBMS_forms/GuidelinesforWriting_a Policy_Br
ief.pdf
• Grainger et al., 2016. Environmental data visualisation for non-scientific contexts: Literature review and design
framework.http://dx.doi.org/10.1016/j.envsoft.2016.09.004
• Kirk, 2017. Data visualization & infographic design: Training workshop. www.visualisingdata.com
• Tsai, 2006. Guidelines for Writing a Policy Brief. http://jhunix.hcf.jhu.edu/~ktsai/policybrief.html
• Kopenski, 2010. Policy Briefs. http://www.richmond.ac.uk/content/library/subjects/politics/policy-briefs.aspx
• Young & Quinn (n.d.). The Policy Brief. http://www.policy.hu/ipf/fel-pubs/samples/PolicyBrief-described.pdf
• Proyecto Infraestructura Natural para la Seguridad Hídrica, 2018-2022. www.infraestructuranatural.pe

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Retorno sobre la inversión en soluciones basadas en la naturaleza para el Agua

Autores y afiliaciones:

Ing. Boris F. Ochoa-Tocachi, PhD: ATUK Consultoría Estratégica
Eco. Eric Ochoa-Tocachi, MSc: ATUK Consultoría Estratégica

Artículo:

Los enfoques tradicionales para la seguridad hídrica basados en infraestructura “gris” (p.ej., presas, reservorios, canales) son costosos e inflexibles, lo que ha incrementado el interés en aplicar soluciones basadas en la naturaleza (SBN) para el agua. Las SBN son definidas por la Unión Internacional para la Conservación de la Naturaleza (UICN) como “acciones para proteger gestionar y restaurar de manera sostenible los ecosistemas naturales o modificados para hacer frente a los desafíos sociales de manera efectiva y adaptativa, proporcionando simultáneamente beneficios para el bienestar humano y la biodiversidad” (UICN, 2016). Entonces, las SBN para el agua no necesariamente se refieren a los ecosistemas “naturales” prístinos, sino al manejo proactivo de los procesos naturales para resolver un problema relacionado con el agua –de ahí el término “solución”– o, ante la ausencia de un problema crítico, para producir co-beneficios (UNESCO, 2018). El paraguas de SBN incluye conceptos como soluciones naturales, adaptación basada en ecosistemas (AbE), reducción de riesgo de desastres basada en ecosistemas (Eco-RRD), infraestructura verde, natural y ecológica, protección de fuentes hídricas, entre otras (UICN, 2020).

Sin embargo, la adopción de SBN está aún limitada por la falta de evidencia publicada sobre su efectividad y viabilidad económica. ATUK Consultoría Estratégica (2020) desarrolló una metodología para calcular el retorno sobre la inversión (ROI por sus siglas en inglés) en SBN para la conservación de cuencas hídricas y la aplicó para calcular el ROI del Fondo para la Protección del Agua (FONAG) de Quito (ver Figuras a, b, c, d). Esta metodología es aplicable también a otros fondos de agua u otras iniciativas, proyectos, programas o instituciones que implementan SBN para el agua o intervenciones sobre la infraestructura natural. El objetivo es calcular cuáles son los beneficios hidrológicos (o además ecológicos, sociales y ecosistémicos) de las intervenciones de conservación hídrica implementadas, y cómo esos beneficios hidrológicos pueden reflejarse en beneficios económicos.

¿Qué es el ROI?

El retorno sobre la inversión (ROI) es un indicador que mide la rentabilidad de una inversión, es decir, la relación que existe entre los beneficios producidos y la inversión necesaria para alcanzar dichos beneficios. En términos simples, el ROI nos indica cuántos dólares ganamos por cada dólar que invertimos en un negocio. Desde un enfoque ambiental, tal como el de los fondos de agua, utilizamos un marco analítico de tres etapas: 1) definición del portafolio de intervenciones de SBN; 2) modelación hidrológica o biofísica de los ecosistemas y fuentes de agua; y, 3) análisis económico basado en un entendimiento del uso y valor de los servicios ecosistémicos.

  • En la primera etapa, identificamos dónde, cuándo y qué se implementa en el “portafolio de SBN” para contribuir a la protección, conservación, manejo y recuperación de las fuentes hídricas, así como su mantenimiento, operación y sostenibilidad en el largo plazo. Es necesario considerar que los costos de las SBN no se limitan a la implementación inicial de las acciones, sino un fuerte componente involucra la inversión en el mantenimiento de estas acciones en el tiempo (Figura b, barras amarillas).
  • En la segunda etapa, relacionamos este portafolio con información, datos y entendimiento del sistema biofísico para modelar computacionalmente el potencial impacto de las intervenciones sobre las fuentes hídricas (Figura a). A este impacto lo llamamos “beneficios hidrológicos”, los cuales resultan de mantener y mejorar la provisión de servicios ecosistémicos, tales como mayor disponibilidad de agua y mejor calidad o temporalidad. La temporalidad es conocida como el servicio de regulación hidrológica, por ejemplo, contar con agua en los periodos de escasez es beneficioso, mientras que el exceso de agua en los periodos de abundancia podría no ser aprovechado y más bien producir problemas como inundaciones.
  • En la tercera etapa, estos beneficios hidrológicos se traducen en beneficios económicos, mediante su “monetización”, es decir, asignándoles un valor económico (Figura b). Para esto, los resultados hidrológicos son conducidos por las diferentes fases del proceso de producción de agua potable y estimando los costos, ingresos, inversiones y beneficios resultantes de la utilización comercial del agua. Así, relacionamos la cantidad, calidad y temporalidad del agua en cada fase y sistema de producción con el costo asociado y el ingreso producido. El resultado es un flujo financiero en el tiempo (Figura c).

¿Cómo estimamos las ganancias y las pérdidas?

Para poder estimar los beneficios producidos por el portafolio de SBN, y para diferenciarlos de lo que sucedería si no se implementa dicho portafolio, utilizamos escenarios de modelación. Los escenarios considerados aquí son tres: BASE, BAU y SBN (Figura a). El escenario BASE es el estado actual del ecosistema y se utiliza para calibrar el modelo de simulación hidrológica y como “estándar” de comparación entre los escenarios. El escenario BAU (siglas en inglés de “Business as Usual”) es aquel que representa lo que sucedería si no implementamos acciones de conservación, manejo o recuperación de las fuentes hídricas. El escenario SBN es aquel que representa la implementación de las intervenciones definidas en el portafolio de SBN para las fuentes hídricas.

¿Cómo simulamos los impactos a futuro?

Para la modelación hidrológica, ATUK Consultoría Estratégica desarrolló un modelo computacional ajustado a las necesidades, requerimientos, recursos y capacidades del FONAG. El FONAG ha venido produciendo información climática e hidrológica desde su creación en el año 2000, y ha sido un impulsor de la generación de nuevo conocimiento y entendimiento de los procesos en los ecosistemas fuentes de agua. El modelo hidrológico FONAG 2.1 by ATUK asimila datos climáticos de precipitación, temperatura y evapotranspiración, así como mapas de elevación, usos y cobertura de suelos, abstracciones y retornos de caudal para simular el funcionamiento de las cuencas hidrográficas del FONAG. Los resultados obtenidos son caudales mensuales y cargas de compuestos transportados en el agua. En este estudio, los resultados muestran que en el escenario BAU, si no se implementasen acciones de conservación, manejo y restauración de las fuentes hídricas, los servicios ecosistémicos decaerían en el tiempo (Figura a, línea naranja). En contraste, el portafolio de SBN ayuda a mejorar el desempeño de las fuentes de agua, aún si en el futuro las condiciones decaen, manteniéndose al menos en un estado mejor que en el escenario BAU (Figura a, línea verde).

¿Cómo evaluamos los beneficios económicos?

En la evaluación económica de los resultados hidrológicos aplicamos además un análisis financiero detallado. Para analizar los beneficios futuros de las inversiones presentes se descuenta el valor del dinero futuro para “traerlo” a su valor actual neto (VAN) equivalente (Figura b y c). ¿Por qué? Porque en términos financieros, es mejor disponer de beneficios en el presente que en el futuro, es decir, el dinero vale más hoy que mañana. Para esto, aplicamos una tasa de descuento (r) al flujo financiero igual a 3.46%, la cual es utilizada por la Empresa Pública Metropolitana de Agua Potable y Alcantarillado de Quito (EPMAPS) para evaluar proyectos de infraestructura gris convencional. Los beneficios brutos son la suma entre las ganancias esperadas en el escenario SBN y las pérdidas evitadas del escenario BAU (Figura b, barras verdes y naranjas). Es decir, el beneficio no solamente se da por mejorar el estado de las fuentes hídricas mediante las SBN, sino además por evitar el daño y la degradación futura que podría darse por la deforestación, la degradación del suelo, la expansión de la frontera agrícola, las quemas, entre otras posibilidades del escenario BAU. En este estudio, los beneficios económicos brutos obtenidos por la implementación del portafolio de SBN (Figura c, línea azul) superan a las inversiones realizadas (Figura c, línea amarilla), es decir, se obtienen beneficios netos positivos en el largo plazo (Figura c, línea morada).

¿Cómo calculamos el retorno sobre la inversión?

Finalmente, tenemos los insumos necesarios para estimar el ROI a través de su fórmula: beneficios netos divididos para la inversión (Figura d). Cuando el resultado es positivo, ganamos; cuando es negativo, perdemos. En este estudio, consideramos una inversión aproximada que el FONAG ha realizado entre 2016 a 2020 de USD 11.05 millones en SBN para las fuentes de agua, sumada a una inversión adicional estimada de USD 29.12 millones en mantenimiento de estas SBN desde 2021 a 2080. Estas inversiones producirían un beneficio bruto de USD 92.67 millones solamente en la producción de agua potable para Quito (Figura c). El año de recuperación es alrededor de 2031, a partir del cual se comienzan a obtener ganancias netas (Figura d). El VAN resultante del beneficio neto es de USD 52.50 millones, y el ROI estimado es 131% para el 2080. Es decir, por cada 1 dólar que el FONAG invierte en SBN para las fuentes hídricas de Quito, se recupera dicho dólar y se producen ganancias adicionales de 1 dólar y 31 centavos más, solamente como resultado de implementar el portafolio de SBN. Incluso si considerásemos que el dinero futuro vale menos (tasa de descuento r=9%), el ROI es positivo y las inversiones se recuperan desde el año 2036. En contraste, si la degradación de ecosistemas se profundiza en los siguientes años, las inversiones en la conservación, manejo y recuperación de cuencas fuentes de agua se vuelve mucho más relevante y podría representar un ROI de hasta 204% (Figura d, rango de resultados en sombra morada). Aquí no consideramos acciones adicionales de SBN que el FONAG seguirá realizando durante su vida institucional hasta el 2080, así como los beneficios extra que esto puede representar frente a los impactos negativos del cambio climático. Estas acciones podrían incrementar aún más el valor y los beneficios netos de invertir en SBN para la seguridad hídrica.

La metodología desarrollada por ATUK Consultoría Estratégica para el FONAG es flexible y replicable en otros estudios, y puede además utilizarse para considerar co-beneficios que pueden incluir elementos como carbono, biodiversidad, impactos sociales u otros servicios ecosistémicos que pueden ser valorizados. Un portafolio de intervenciones en los ecosistemas genera muchos más beneficios que solo los hídricos, es decir, genera también un “portafolio de beneficios”. Estos diferentes beneficios son relevantes de acuerdo con el actor del ecosistema o la institución enfocada. Definir los beneficios biofísicos relevantes y su posterior traducción en beneficios económicos es una tarea fundamental que guía todo el ejercicio de evaluación. Este proceso solamente puede ser exitoso si se cuenta con datos, información y un entendimiento profundo, tanto de los ecosistemas cuanto del “giro de negocio” evaluado. Nuestra metodología es transparente y robusta, y demuestra que es posible cuantificar los impactos, tanto positivos como negativos, de las acciones humanas sobre los ecosistemas y de las soluciones basadas en la naturaleza. Además, demuestra que la cooperación interinstitucional y la diversificación de soluciones grises y verdes puede ser más efectiva, rentable y sostenible en el largo plazo que las soluciones unidimensionales. Los fondos de agua, como el FONAG, son el ejemplo perfecto de que esto es posible.

ROI Agua - ATUK
Figura 1. Fotografía de un bofedal de puna en la región de Chalhuanca, Arequipa, Perú.

Referencias:

  • ATUK Consultoría Estratégica, 2020. Impacto del FONAG sobre las fuentes de agua para Quito (Fondo para la Protección del Agua: Quito, Ecuador).
  • UICN, 2016. Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges (International Union for Conservation of Nature: Gland, Switzerland).
  • UICN, 2020. Guidance for using the IUCN Global Standard for Nature-based Solutions. A user friendly framework for the verification, design and scaling up of Nature-based Solutions (International Union for Conservation of Nature: Gland, Switzerland).
  • UNESCO, 2020. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UN-Water UNESCO World Water Assessment Programme: Paris, France).

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Guía de Buenas Prácticas sobre Conservación y Restauración de Humedales Altoandinos

Boris F. Ochoa-Tocachi, PhD: ATUK Consultoría Estratégica

Ana Elizabeth Ochoa-Sánchez, PhD: Universidad del Azuay

Las personas tienen una relación especial con la naturaleza. No es extraño ver que, incluso en ciudades muy densas y modernas, los espacios verdes sean oasis de descanso y entretenimiento y que muchas casas y departamentos tengan al menos una o dos masetas sembradas. En busca de maximizar la fertilidad del suelo, es posible adquirir tierra negra en varios viveros y mercados de la ciudad. Sin embargo, lo que varias personas ignoran, es que mucha de esa tierra negra es explotada y traída desde las turbas en los humedales de alta montaña.

 

Los humedales de alta montaña (punas, jalcas, Patagonia, bofedales, oconales, páramos y turberas) son sistemas ecohidrológicos que tienen una gran capacidad de almacenamiento de agua. Estos reservorios naturales pueden ser alimentados por fuentes superficiales de agua, como la escorrentía generada por eventos de lluvia, o por agua subterránea, como afloramientos o flujos de agua subsuperficiales. El agua recibida se puede almacenar sobre el suelo, debido a depresiones topográficas, y dentro del suelo, gracias a su alta porosidad. Los humedales pueden almacenar cantidades de agua tan altas como 2000 mm (es decir, una columna de 2 metros de altura de agua por cada metro cuadrado de superficie), las cuales pueden ser comparables con el caudal anual e incluso superiores a la precipitación anual de la cuenca a la que pertenece. El agua almacenada en el suelo es retenida durante el año por la presencia de capas con baja conductividad hidráulica vertical, tales como las arcillas. Posteriormente, el agua puede ser devuelta a quebradas y ríos aguas abajo por flujos laterales subsuperficiales. La capacidad de devolver el agua almacenada a la cuenca dependerá de la conectividad hidrogeológica del humedal. Un humedal hidrogeológicamente desconectado podrá tener flujos subterráneos poco profundos de respuesta rápida en el orden de semanas, mientras que un humedal conectado al acuífero podría presentar recarga profunda y tener un impacto sostenido a lo largo del año, incluyendo las temporadas secas.

Conservación y Restauración de Humedales Altoandinos
Figura 1. Fotografía de un bofedal de puna en la región de Chalhuanca, Arequipa, Perú.

Este estado permanentemente saturado de los humedales genera cambios químicos en sus suelos que se han venido desarrollando durante miles o hasta millones de años. Los suelos que se encuentran permanentemente húmedos acumulan materia orgánica y ralentizan su descomposición. Esta materia orgánica acumulada incrementa el contenido de carbono orgánico en el suelo. A su vez, un mayor contenido de carbono permite un mayor almacenamiento de agua, lo que resulta efectivamente en un círculo virtuoso entre los ciclos de agua y carbono. El carbono almacenado en los suelos convierte a los humedales en uno de los almacenes más importantes para la mitigación del cambio climático. Sin embargo, es precisamente este alto contenido de carbono el que vuelve a estos suelos negros y fértiles muy atractivos para los extractores ilegales, quienes los explotan para venderlo luego en viveros o mercados de la ciudad como abono o tierra orgánica. Este es un problema regional andino. Un reportaje del periódico Ojo Público de Perú reportó que entre 2012 y 2015 el área de humedales altoandinos se redujo en casi 5,000 hectáreas en ese país (una superficie ligeramente mayor a la que ocupa toda la ciudad de Ambato). El “negocio para pocos” de la tierra negra seguía fluyendo desde las altas montañas hasta las ciudades generando conflictos sociales y violentos con las comunidades locales que habitan en las zonas altoandinas. Mientras algunos pobladores tratan de defenderlos de un vacío legal, especialistas empiezan a comparar su depredación con la de la minería ilegal. De igual forma, en Ecuador, no es extraño encontrar tierra negra explotada de los humedales altoandinos en viveros y mercados populares en zonas como Nayón y otras.

 

Los humedales altoandinos, no solamente están amenazados por la depredación ilegal. Sus suelos son particularmente sensibles a cambios en el ciclo del agua inducidos por la erosión de quebradas, construcción de drenajes, sequías prolongadas y los usos del suelo para actividades agrícolas y ganaderas intensas. La degradación de suelos ocasiona pérdida de la vegetación, aumento de escorrentía, reducción de infiltración de agua en el suelo, reducción en la productividad, entre otros impactos. La ganadería intensiva modifica las características físicas del suelo produciendo compactación, la cual es una de las formas más severas de degradación de suelos. Esta compactación de suelos tiene consecuencias dramáticas en la hidrología de los humedales pues inhibe la infiltración, disminuye la disponibilidad de agua, aumenta la escorrentía y la erosión. Todo esto lleva a un impacto en los ecosistemas y en las mismas comunidades locales. Por ejemplo, las comunidades locales, al experimentar una disminución de la disponibilidad o calidad del agua para sus cultivos y otras actividades productivas aguas abajo, pueden profundizar su dependencia en la ganadería. Esto conlleva a incrementar el número de animales y a extender las zonas de pastoreo aguas arriba. El sobrepastoreo, a su vez, disminuye aún más la capacidad de almacenamiento y regulación del agua por compactación de los suelos en los humedales y ecosistemas cercanos, lo cual reduce todavía más la disponibilidad de agua en los periodos de estiaje. El estrés hídrico resultante obliga a las comunidades a buscar zonas de pastoreo cada vez más altas y cercanas a las fuentes de agua, profundizando esta dependencia en la ganadería, el sobrepastoreo y otras prácticas no sostenibles. Esta espiral de pobreza y degradación debe ser rota y revertida mediante la restauración y conservación de los humedales y ecosistemas altoandinos, así como mediante el mejoramiento y diversificación de las prácticas productivas para evitar la ocupación del suelo aguas arriba y en fuentes de agua.

 

La Convención RAMSAR, firmada en Ramsar, Irán en 1967, propone la conservación y uso racional de los humedales mediante esfuerzos locales, nacionales y con cooperación internacional. En el marco de esta Convención, los documentos más actuales y pertinentes son la Estrategia Regional para Conservación y Uso Sostenible de Humedales Altoandinos y el Cuarto Plan Estratégico de RAMSAR para 2016–2024. Los objetivos desarrollados en estos documentos requieren de la aplicación local y nacional y, además, de intercambio de información y experiencias a fin de dar un adecuado seguimiento al estado de conservación en el que se encuentran los humedales e implementar acciones conjuntas enfocadas en su restauración. El Fondo para la Protección del Agua (FONAG) en coordinación con el Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador (MAATE) gestionaron la elaboración de una Guía de Buenas Prácticas sobre Conservación y Restauración de Humedales Altoandinos (Ochoa-Sánchez et al., 2021) basada en documentos científicos y técnicos que promuevan la conservación y el manejo sostenible de los humedales altoandinos.

Conservación y Restauración de Humedales Altoandinos
Figura 2. Portada de la Guía de Buenas Prácticas sobre Conservación y Restauración de Humedales Altoandinos (Ochoa-Sánchez et al., 2021).

La Guía de Buenas Prácticas sobre Conservación y Restauración de Humedales Altoandinos que es el resultado de lo que cada uno de los países andinos aportó para este crear este documento colaborativo.  Esperamos que sirva de aporte para desarrollar más la temática y continuar en contacto para compartir experiencias y aprendizajes.

Español:

Link de descarga: http://www.fonag.org.ec/web/wp-content/uploads/2021/12/Buenas-Practicas-Conservacion-y-Restauracion-de-HAA-15-11-2021.pdf

Inglés:

Link de descarga: http://www.fonag.org.ec/web/wp-content/uploads/2021/12/Good-Practices-Conservation-and-Restoration-of-HAA-15-11-2021.pdf

La misma relación especial que tenemos las personas con la naturaleza nos debe guiar a conservar, proteger, restaurar y manejar sosteniblemente los humedales y ecosistemas altoandinos: son fuentes de agua, almacenes de carbono, paisajes culturales y reservas de biodiversidad. Las presentes y futuras generaciones dependemos de su salud y conservación.

Referencias:

  • Convención de Ramsar y Grupo de Contacto EHAA. (2008). Estrategia Regional para la Conservación y Uso Sostenible de Humedales Altoandinos.
  • Cooper et al. (2019). Drivers of peatland water table dynamics in the central Andes, Bolivia and Peru. Hydrological Processes. 33: 1913– 1925.
  • Cuadros-Adriazola, J (2020). Hydrology of high-Andean ‘bofedales’ wetlands: A conceptual model. MSc thesis, Imperial College London.
  • Ochoa-Sánchez et al. (2021). Guía de Buenas Prácticas sobre Conservación y Restauración de Humedales Altoandinos. Fondo para la Protección del Agua y Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador, RAMSAR, ISBN: 978-9942-8807-1-0.
  • Patiño et al. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. Catena, 202: 105227.
  • (2014). Ramsar. La Convención Sobre Los Humedales y Su Misión. https://www.ramsar.org/es/acerca-de/la-convencion-sobre-los-humedales-y-su-mision
  • (2015). El Cuarto Plan Estratégico para 2016 – 2024.
  • Valois et al. (2020). Characterizing the water storage capacity and hydrological role of mountain peatlands in the arid Andes of North-Central Chile. Water, 12: 1071.
  • Valois et al. (2021). Improving the underground structural characterization and hydrological functioning of an Andean peatland using geoelectrics and water stable isotopes in semi-arid Chile. Environmental Earth Sciences, 80: 41.
  • Ziegler et al. (2020) Arrasar la tierra: una comunidad resiste el tráfico de humedales. Ojo Público. https://ojo-publico.com/1946/arrasar-la-tierra-el-trafico-de-humedales-en-sierra-de-lima

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More

Tendencias climáticas y de la temperatura superficial del océano en las Islas Galápagos

La ubicación de las islas Galápagos las exponen a condiciones oceanográficas y climatológicas variadas que afecta la distribución de las especies marinas y hábitats a través del archipiélago. La zona de convergencia intertropical (ITCZ por sus siglas en inglés) y la oscilación del sur de El Niño (ENSO por sus siglas en inglés), en conjunto con un complejo sistema de corrientes oceánicas y vientos, gobiernan la dinámica climática regional (Trueman & D’Ozouville, 2010).

 

Los cambios climáticos en el océano también tienen repercusiones socioeconómicas. Oscilaciones en la temperatura superficial marina usualmente están ligadas a variaciones en la abundancia y distribución de peces (Edgar, 2010). Estos cambios afectan la pesca artesanal dentro de las islas, de la cuales dependen el consumo local y las exportaciones internacionales.

 

Finalmente, existen graves implicaciones en la seguridad alimenticia y de acceso al agua potable ante un evento de cambio climático en el archipiélago. La población de las islas es de aproximadamente 25 000 habitantes, sin embargo, la cantidad de turistas que pueden llegar anualmente es de 270 000 (Dirección del Parque Nacional Galápagos, 2019). Condiciones de sequía o un atraso de la época de lluvias, dificultaría el acceso al suministro de agua para consumo o riego, declarando estados de emergencia.

 

Teniendo en cuenta estas condiciones, investigadores de la Universidad San Francisco de Quito (USFQ), Galapagos Science Center (GSC), Universidad de Oxford y de la Universidad de Las Américas (UDLA) describieron las tendencias entre 1981-2017 de precipitación y temperatura en Santa Cruz y San Cristóbal; analizaron las tendencias históricas de la temperatura superficial del océano para la Reserva Marina Galápagos y finalmente, generaron proyecciones de las variables climáticas terrestres (Paltán et al., 2021).    

La temperatura promedio terrestre en los últimos 35 años ha visto un incremento de 0,6°C en regiones con una altitud menor a 250 m s.n.m., mientras que en las tierras altas del archipiélago (por encima de los 250 m s.n.m.) se ha notado un incremento de 0,21°C. Es importante recalcar que en las tierras altas se ha visto un aumento de temperatura en las épocas secas (junio-noviembre), mientras que en las zonas costeras el patrón es inverso: el promedio de temperatura más alto se encuentra en la época lluviosa (diciembre-mayo).

 

En el caso de la precipitación, se observa un descenso significante de la cantidad de lluvia en la última década. Tanto Santa Cruz como San Cristóbal se han vuelto un 45% más secas en promedio en desde el año 2000. Además, en la actualidad el inicio de la temporada de lluvias se ha retrasado 20 días.

Temperatura Océano Galápagos

Figura 1: Valores de precipitación y temperatura promedio anual observadas por las estaciones meteorológicas de Santa Cruz y San Cristóbal entre 1981 y 2017 para: a) Zonas costeras, b) Tierras altas. Fuente: Paltán et al., 2021.

Las proyecciones muestran que la precipitación y la temperatura seguirán aumentando en las tres islas principales del archipiélago (Isabela, San Cristóbal y Santa Cruz). Se calcula un incremento del 30 y 45% de la precipitación promedio anual para el 2050. En términos de temperatura, los estimados indican un aumento de entre 1,4 a 1,9°C para 2050.

Los análisis de la temperatura de la superficie del océano indican que ha habido un incremento de 0,06°C por año en las décadas recientes. Para el período 2002-2018 hubo un incremento total de 1,2°C en la Reserva Marina Galápagos.

Temperatura Océano Galápagos

Figura 2: Anomalías promedio anuales en la temperatura de la superficie oceánica en grados para el período 2002-2018. Fuente: Paltán et al., 2021.

Los resultados indican la tendencia general al incremento de temperatura tanto en el aire como en la superficie del océano. Ante estos escenarios, es necesario implementar enfoques basados en riesgos climáticos como la base para la planificación de estrategias en los sectores de suministro de agua, alimentos y conservación en las islas Galápagos. Estas estrategias deben ser sólidas ante una amplia gama de condiciones climáticas potencialmente inciertas, pero a la vez flexibles para permitir a las islas adaptarse a escenarios futuros heterogéneos climáticos y no climáticos.

Referencias:

Dirección del Parque Nacional Galápagos. (2019). Informe Anual de Visitantes a las áreas protegidas de Galápagos.

Edgar, G. J. (2010). El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biology, 16, 2876–2890.

Paltán, H. A., Benitez, F. L., Rosero, P., Escobar-Camacho, D., Cuesta, F., & Mena, C. F. (2021). Climate and sea surface trends in the Galapagos Islands. Scientific Reports, 11(1), 1–13. Retrieved from https://doi.org/10.1038/s41598-021-93870-w

Trueman, M., & D’Ozouville, N. (2010). Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res, 67, 26–37.

¿Quieres suscribirte a nuestro boletin mensual?

Si deseas recibir información de alto valor, puedes dejarnos tus datos y te enviaremos mensualmente nuestro boletín informativo con todas las noticias relacionadas a ciencia, economía, sociedad y tecnología.

Read More